Chromatin States: A quantitative genetics perspective

Irit Gat-Viks

Department of Cell research and Immunology Life Sciences, Tel-Aviv University

The genetic basis of disease

Finding genes influencing a disease

Exploit natural polymorphisms to understand disease mechanisms

Association study for a quantitative trait

QTL analysis: Standard linear models

QTL analysis: Standard linear models

1.ANOVA model

$$x_{ij} = \mu_i + e_{ij}$$

- X_{ii} Phenotype of j-th individual of marker genotype i
- μ_i^{ij} Effect of marker i
- e_{ij} Residual error: the deviation of the jth individual from the expected value of the ith marker, E(eij)=0. Var(eij)= σ^2

The presence of a linked QTL is indicated by a significant between-marker variance

2. Multiple regression model
$$x_j = \mu + \sum_{i=1}^n b_i g_{ij} + e_j$$

$$x_j$$
 - Phenotype of jth individual

 g_{ij} - Indicator variables (one for each marker genotype)

 $g_{ij} = \begin{cases} 1 & \text{if individual j has marker genotype i} \\ 0 & \text{otherwise} \end{cases}$

 e_j - Residual error

The presence of a linked QTL is indicated by a significant fraction of character variance accounted for by the marker genotype

Risk Alleles for Multiple Sclerosis

Manhatten plot

N Engl J Med 2007

A quantitative genetics perspective

Constructing **regulatory elements maps** using epigenomic profiling

For example, revealing **enhancers**:

• The locations of enhancer elements coincide with DNase I hypersensitive regions of open chromatin flanked by nucleosomes marked with H3K4me1/2.

- H3K27ac and H4K16ac are associated with active chromatin.
- H3K27me3 and H3K9me3 are associated with repressed chromatin.

Interpreting susceptibility loci using epigenomic profiling

Corradin et al. genome medicine 2014

Enrichment of genome-wide association study variants in putative enhancer elements

The challenge: what is the **role** of non-coding variants in gene expression?

Corradin et al. genome medicine 2014

Understanding the role of variants in gene expression based on their genomic positions

Understanding the role of variants in gene expression based on their genomic positions

b Distant

Regulatory sequence

Direct or indirect regulation (many targets)

Direct or indirect regulation (one target)

Understanding the role of variants in gene expression based on their genomic positions

Determine the mechanisms by which regulatory variants affect gene expression

The challenge: eQTL analysis cannot reveal the complete functional mechanism by which non-coding variants influence gene expression

Determine the mechanisms by which regulatory variants affect gene expression

Example 1: Genetic landscape of open chromatin in yeast

Example 1: Genetic landscape of open chromatin in yeast

Broader peaks of naked DNA compared to DHS-seq and ATAC-seq

Lee et al. PLOS Genetics 2013

Association study for an open chromatin trait

Characterization of *cis*-associations

Lee et al. PLOS Genetics 2013

P = 6.2e-6

0000

ο

8

ΒY

Characterization of *trans*-associations

Lee et al. PLOS Genetics 2013

Inferring causal relations

M1. P(L, R, C) = P(L) P(R|L) P(C|R)

M2. P(L,R,C) = P(L) P(C|L) P(R|C)

M3. P(L, R, C) = P(L) P(C|L) P(R|C,L)

Schadt et al. Nature Genetics 2005

The likelihood for each model over all individuals in the population of interest are given by:

likelihood function = $L(\theta; M) = p(data | \theta_M)$

Schadt et al. Nature Genetics 2005

Rintish et al. 2014; 30 Rat BXH/BXB strains, liver and heart

- 18.1% and 14.5% of all H3K4me3 and H3K27me3 QTLs were also eQTL.
- 20% of all eQTL were also QTL for a histone mark.

Degner et al. (2012), 70 Yoruba lymphoblastoid cell lines

- •16% of DNase I sensitivity QTL (dsQTL) were also eQTL
- •23% of eQTL were also dsQTL

Genetic landscape of histone modifications in rat liver and heart

	Heart (25,064)		Liver (31,447)		Both tissues (20,076)	
H3K4me3 (traits)						
FDR-cutoff ^a	cis	trans	cis	trans	cis	trans
0.05	2638	2504	2945	1464	931	82
0.01	2024	812	2235	243	698	31
0.001	1414	232	1454	59	467	13
1×10^{-4}	776	30	834	26	232	4
1 × 10 ^{-s}	0	0	460	12	0	0
	Heart		Liver		Both tissues	
H3K27me3 (traits)	(4,214)		(3,776)		(2,688)	
FDR-cutoff ^a	cis	trans	cis	trans	cis	trans
0.05	102	15	196	38	35	1
0.01	74	4	166	7	30	1
0.001	57	2	131	2	23	0
1×10^{-4}	50	1	97	0	18	0
1 × 10 ⁻⁵	50	1	97	0	18	0

Table 2. HistoneQTL mapping results in heart and liver tissue

^aCutoff for limitation of false discoveries.

Rintisch et al. Genome research 2014

Rintisch et al. Genome research 2014

Rintisch et al. Genome research 2014

Example 3: Revealing functionally linked modifications

Coordinated change in histone marks along ~2kb regions

McVicker et al. (Pritchard & Gilad labs) Science 2013

Revealing functionally linked modifications, depending on the same genetic element

Correlation in **allelic imbalance** between histone marks at DNase I sensitive QTL sites (dsQTLs)

Coordinated change in histone marks between distal (>5kb) regions

Allelic imbalance across DNase I sensitivity QTLs and eQTLs

ChIP-Seq mark	Functional association
H3K4me3	Active promoters
H3K4me1	Active enhancers
H3K27ac	Active promoters and enhancers
H3K27me3	Inactive chromatin
RNA Pol II	Transcription

Coordinated change in histone marks between distal (>5kb) regions

Coordinated change in histone marks between distal regions

Coordinated change in histone marks between distal regions

Example 4: Reveal the function of chromatin states in complex physiological traits

Example 4: Reveal the function of chromatin states in complex physiological traits

Example 4: Reveal the function of chromatin states in complex physiological traits

A molecular basis for classic blond hair color in Europeans

•Genetic variants linked to eight genes in humans are significantly associated with blond hair color in Europeans.

•Some variants alter the coding regions of genes known to be involved in pigmentation.

•Some variants map outside the protein-coding regions of pigmentation genes.

The Human *KITLG* gene (mouse *Kitl*)

• Encodes a secreted ligand for the KIT receptor tyrosine kinase and has an essential role in the development, differentiation and pigmentation.

Nature Reviews | Cancer

The Human *KITLG* gene (mouse *Kitl*)

- A noncoding SNP (rs12821256) located over 350 kb upstream of KITLG is significantly associated with blond hair color in Iceland and The Netherlands.
- The blond-associated A>G substitution at this position is prevalent in northern European populations but virtually absent in African and Asian populations

An inversion spanning the noncoding SNP rs12821256

Displacement of a single copy of the distant upstream regulatory sequences for *Kitl* is sufficient to reduce *Kitl* expression and lighten hair color.

Searching for the functional enhancer

Five human fragments were cloned upstream of a *lacZ* reporter gene and tested for *in vivo* enhancer activity in transgenic mice.

rs12821256 alters a TCF/LEF binding site and reduces LEF responsiveness in keratinocytes

rs12821256 alters a TCF/LEF binding site and reduces LEF responsiveness in keratinocytes

Guenther et al. Nature Genetics 2014

Mouse lines differing at a single base-pair position in the *KITLG* enhancer show differences in hair color

Matched lines of site-specific integration in transgenic mice

Small (20%) quantitative changes in enhancer activity were sufficient to alter hair color *in vivo*

The molecular basis of disease

Utilizing genetics to understand transcriptional circuitry and the regulatory conformation of the genome

- Interpreting susceptibility loci using epigenomic profiling
- Revealing susceptibility loci that impact the chromatin landscape: Which genetic variants determine histone marks, open chromatin and TF binding?
- Reveal functionally linked histone marks between nearby or distal regions
- Reveal chromatin regulators
- Reveal the function of chromatin states in common disease

Thank you!

